Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924313

RESUMO

The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.


Assuntos
Instabilidade Cromossômica , DNA Helicases/metabolismo , Replicação do DNA , Animais , Sobrevivência Celular , DNA Helicases/química , DNA Mitocondrial/metabolismo , Doença/genética , Humanos
2.
Cell Rep ; 23(11): 3352-3365, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898404

RESUMO

Genomic damage can feature DNA-protein crosslinks whereby their acute accumulation is utilized to treat cancer and progressive accumulation causes neurodegeneration. This is typified by tyrosyl DNA phosphodiesterase 1 (TDP1), which repairs topoisomerase-mediated chromosomal breaks. Although TDP1 levels vary in multiple clinical settings, the mechanism underpinning this variation is unknown. We reveal that TDP1 is controlled by ubiquitylation and identify UCHL3 as the deubiquitylase that controls TDP1 proteostasis. Depletion of UCHL3 increases TDP1 ubiquitylation and turnover rate and sensitizes cells to TOP1 poisons. Overexpression of UCHL3, but not a catalytically inactive mutant, suppresses TDP1 ubiquitylation and turnover rate. TDP1 overexpression in the topoisomerase therapy-resistant rhabdomyosarcoma is driven by UCHL3 overexpression. In contrast, UCHL3 is downregulated in spinocerebellar ataxia with axonal neuropathy (SCAN1), causing elevated levels of TDP1 ubiquitylation and faster turnover rate. These data establish UCHL3 as a regulator of TDP1 proteostasis and, consequently, a fine-tuner of protein-linked DNA break repair.


Assuntos
Cisteína Endopeptidases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo I/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Quebra Cromossômica , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Regulação para Baixo , Células HEK293 , Humanos , Nucleotidases/metabolismo , Diester Fosfórico Hidrolases/genética , Proteostase , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase , Ubiquitinação , Regulação para Cima
3.
Nat Commun ; 3: 733, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22415824

RESUMO

Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , Diester Fosfórico Hidrolases/metabolismo , Proteína SUMO-1/metabolismo , Sítios de Ligação , Linhagem Celular , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Sumoilação , Transcrição Gênica
4.
J Cell Sci ; 124(Pt 10): 1655-63, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21536833

RESUMO

DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1(-) cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1(-) cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Dictyostelium/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dictyostelium/metabolismo , Autoantígeno Ku , Recombinação Genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS One ; 6(2): e17270, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364888

RESUMO

BACKGROUND: The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors. METHODOLOGY/PRINCIPAL FINDINGS: Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins. CONCLUSIONS/SIGNIFICANCE: We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.


Assuntos
Proteínas de Transporte/metabolismo , Evolução Molecular , Antígenos Específicos de Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada/fisiologia , Humanos , Antígenos Específicos de Melanoma/química , Antígenos Específicos de Melanoma/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência
6.
Mol Cell Biol ; 28(4): 1197-206, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18086888

RESUMO

The SMC protein complexes play important roles in chromosome dynamics. The function of the SMC5-6 complex remains unclear, though it is involved in resolution of different DNA structures by recombination. We have now identified and characterized the four non-SMC components of the human complex and in particular demonstrated that the MAGEG1 protein is part of this complex. MAGE proteins play important but as yet undefined roles in carcinogenesis, apoptosis, and brain development. We show that, with the exception of the SUMO ligase hMMS21/hNSE2, depletion of any of the components results in degradation of all the other components. Depletion also confers sensitivity to methyl methanesulfonate. Several of the components are modified by sumoylation and ubiquitination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Sobrevivência Celular/efeitos dos fármacos , Proteínas Cromossômicas não Histona , Dano ao DNA , Células HeLa , Humanos , Imunoprecipitação , Ligases/química , Espectrometria de Massas , Metanossulfonato de Metila/farmacologia , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Termodinâmica , Ubiquitinação/efeitos dos fármacos
7.
Cell Cycle ; 5(7): 702-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582628

RESUMO

Repair of DNA double strand breaks (DSBs) is critical for the maintenance of genome integrity. DNA DSBs can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). Whilst HR requires sequences homologous to the damaged DNA template in order to facilitate repair, NHEJ occurs through recognition of DNA DSBs by a variety of proteins that process and rejoin DNA termini by direct ligation. Here we review two recent reports that NHEJ is conserved in the social amoeba Dictyostelium discoideum. Certain components of the mammalian NHEJ pathway that are absent in genetically tractable organisms such as yeast are present in Dictyostelium and we discuss potential directions for future research, in addition to considering this organism as a genetic model system for the study of NHEJ in vivo.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Dictyostelium/genética , Transdução de Sinais , Animais , Modelos Genéticos , Recombinação Genética
8.
Curr Biol ; 15(20): 1880-5, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16243037

RESUMO

DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.


Assuntos
Domínio Catalítico/fisiologia , Dano ao DNA , Proteína Quinase Ativada por DNA/fisiologia , Dictyostelium/fisiologia , Filogenia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Bleomicina , Western Blotting , Domínio Catalítico/genética , Análise por Conglomerados , Biologia Computacional , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dictyostelium/genética , Citometria de Fluxo , Histonas/metabolismo , Autoantígeno Ku , Dados de Sequência Molecular , Fosforilação , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...